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Abstract 23 

 The re-authorized Magnuson‐Stevens Fishery Conservation and Management Act 24 

required regional fishery management councils to implement annual catch limits (ACLs) for 25 

nearly all stocks under U. S. federal management.  Since 2011, the number of stocks requiring 26 

ACLs (and monitoring) has increased nearly tenfold, with strict accountability measures 27 

requiring either in-season quota closures or shortening of subsequent seasons to avoid ACL 28 

overages.  Robust forecasts of catch can also provide a projected baseline for evaluation of 29 

proposed management alternatives.  We compared generalized linear models (GLM), generalized 30 

additive models (GAM), and seasonal auto-regressive integrated moving average (SARIMA) 31 

models in terms of fit, accuracy, and f ability to forecast catches of four representative fish stocks 32 

supporting recreational fisheries in the southeastern United States.  All models were useful in 33 

developing reliable forecasts to inform management.  GAM models provided the best fit the 34 

observed data; however, the SARIMA and GLM modeling approaches provided the best 35 

forecasts for most scenarios.  SARIMA and GLM also provided the best predictions of the 36 

seasonal trend in landings, a desirable feature for in-season quota monitoring.  SARIMA was 37 

more sensitive and GLM was less sensitive to recent trends, providing a useful bookend for 38 

forecasts.  The time span of input data affected forecast accuracy from all model types 39 

considered.  This study suggests multiple forecasting models should be investigated, with 40 

performance metrics carefully selected and evaluated, as no single model is likely to perform 41 

best for all stocks of interest.   42 

  43 
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Introduction 44 

 The Magnuson‐Stevens Fishery Conservation and Management (MSA) (U.S. Congress, 45 

2006) requires regional fishery management councils to specify annual catch limits (ACLs) at a 46 

level such that overfishing does not occur.  Annual catch limits are required for all stocks under 47 

U. S. federal management, except stocks with annual life cycles and those managed by 48 

international agreement in which the U. S. participates.  This provision was implemented in 2010 49 

or earlier for stocks subject to overfishing, and in 2011 for all other federally-managed stocks.  50 

This requirement results in a  nearly tenfold increase in in the number of ACLs must be 51 

monitored (from 2012 forward) relative to previous years (NMFS, 2014).  To address this 52 

challenge, methods for forecasting fisheries catches and projecting season lengths to avoid ACL 53 

overages are needed.  Reliable forecasting methods are needed especially for recreational 54 

fisheries in the southeastern region of the U.S.  In this region, recreational landings comprise the 55 

majority of total landings for many species (Coleman et al. 2004) yet, do have only limited in-56 

season harvest information available (i.e., data available in two-month waves after 45 day delay 57 

for each wave) that are often inadequate for current management needs. .   58 

 Forecasting fish landings is a critical element in the management of fisheries stocks 59 

because it can inform strategy development and policy decisions (Thorson et al. 2014; 60 

Makridakis and others 2008;  Hanson et al. 2006; Stergiou and Christou, 1996).  Forecasts can be 61 

used to apply in-season or post-season accountability measures and also to provide a baseline for 62 

forecasting the impacts of proposed management actions.  To date, forecasting applications in 63 

fishery management applications are limited.  Thorson and et al. (2014) evaluated a suite of 64 

models across > 2,000 vertebrate taxa and provided some general guidance.  In the U.S. South 65 

Atlantic and Gulf of Mexico, Hanson et al. (2006) evaluated three models used to forecasts 66 
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annual landings of Atlantic Menhaden and found that multiple regression and artificial neural 67 

networks could be used for this long-term commercial fishery.  Forecasts of Brown Shrimp 68 

growth and production are also forecasted in the Gulf of Mexico based on environmental 69 

conditions in estuaries (Adamack et al. 2012).  To be useful, appropriate methodologies need to 70 

be developed and evaluated, weighing the tradeoffs of model complexity, performance, and the 71 

ability to inform management (Tsitsika and others 2007).  Approaches to forecasting fish 72 

landings are varied but generally fall into four broad categories: 1) using the previous year’s 73 

landings, 2) population dynamics models, 3) correlation-based regression models, and 4) time-74 

series models.   75 

Population dynamics models are advantageous because they attempt to characterize 76 

factors affecting abundance, productivity, and growth potential of a stock (Hilborn and Walters, 77 

1992; Buckland and others 2004; Newman and others 2006).  Unfortunately, these models are 78 

data intensive, and require substantial time, effort, and resources to develop (Thorson et al. 79 

2014).  Due to these limitations, stock assessment models are only developed every 3-5 years for 80 

economically important species in the Southeastern U.S.  For many federally managed species, 81 

adequate data are unavailable and resources are insufficient to develop population dynamics 82 

assessment models (Berkson and Thorson, 2015; Carruthers et al. 2014).  Moreover, when 83 

forecasting is the primary objective, population dynamics models are not necessarily superior to 84 

other less intensive methods as they require estimates of many parameters and have a tendency 85 

to overfit, limiting their forecasting performance (Ward et al. 2014; Clark, 2004).   86 

 Correlation-based regression models (e.g., linear models) have been used successfully to 87 

predict menhaden landings in the U.S. Atlantic and Gulf of Mexico since at least 1975 (Schaaf 88 

and others 1975) and were used for more than three decades to produce annual forecasts of 89 
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landings (Hanson and others 2006).  However, landings for many species follow non-linear 90 

trajectories where the response variable may be more appropriately modeled using non-Gaussian 91 

error distributions (Ward et al. 2014).  Generalized linear models (GLMs;(Nelder and 92 

Wedderburn, 1972) are extensions of linear models that can accommodate response variables 93 

following exponential family distributions (e.g., Poisson, negative binomial) and may be superior 94 

to linear models for modeling fish landings data.   Generalized additive models (GAMs;(Wood, 95 

2006) extend the GLM by allowing non-parametric relationships between the response and 96 

explanatory variables (Wood, 2003).  Rigorous routines for model selection and validation may 97 

prevent overfitting than occur with these models (Zuur and others 2010).  Most correlation-based 98 

methods do not account for time explicitly in the model, although some methods may provide 99 

this capability (e.g., generalized estimating equations).  If covariates are used, a determination of 100 

future values of covariates is required to develop a forecast.  In some cases, this can be quite 101 

realistic (e.g., landings restriction due to closed season); however, in other cases it may be 102 

difficult or impossible to predict (e.g. environmental conditions).  103 

  Time series models are conceptually simple and popular tools for forecasting.  Seasonal 104 

auto-regressive integrated moving average (SARIMA) models can be constructed using only the 105 

information contained in the series (Dennis and others 1991; Holmes, 2001; Ives and others 106 

2010) and aim to describe the autocorrelation in these data (Hyndman and Athanasopoulos 2014; 107 

Ward et. al 2014). More simply, this can be thought of as a multiple regression model with 108 

lagged values as covariates.  These models are flexible and assume  that future conditions are 109 

similar to the past conditions that generated these observed data.  SARIMA models assume that 110 

the time series is stationary with stable variance throughout the time period.  Unfortunately, these 111 
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assumptions are frequently violated with fisheries data, although this can often be resolved 112 

through differencing and/or transformation (Box and others 2013).  113 

 The purpose of this study was to evaluate a suite of approaches to produce short-term 114 

forecasts at two-month intervals (i.e., 'waves') necessary to inform fisheries management 115 

decisions for U.S. federally managed species in the Gulf of Mexico and Atlantic Ocean.  116 

Specifically, we considered approaches that could be fit with minimal data (e.g., landings data) 117 

and applied to a range of species with varied life histories and fisheries characteristics.  We used 118 

four representative fish stocks/stock complexes supporting recreational fisheries that are 119 

currently managed by the South Atlantic or Gulf of Mexico Fishery Management Councils and 120 

compared the performance of GLMs, GAMs, and SARIMA in terms of model fit, accuracy, and 121 

forecasting ability.  The goal of these approaches was to develop reliable methods for predicting 122 

timing of in-season closures to avoid exceeding an ACL and predicting total annual landings in 123 

the absence of a quota closure. 124 

 125 

Materials and Methods 126 

Recreational Fisheries Catch Data 127 

 Recreational landings data were obtained from the NMFS Southeast Fisheries Science 128 

Center (SEFSC) ACL Dataset (accessed May 2013), which provided aggregated landings data 129 

from 1986-2012 from the Marine Recreational Fisheries Statistics Survey (MRFSS), the 130 

Southeast Headboat Survey (HBS), and the Texas Parks and Wildlife Department (TPWD) Creel 131 

Survey.  Landings data from the various surveys are provided in both numbers and pounds.  The 132 

ACL dataset provides improved quality assurance and quality control on the raw data generated 133 

by each of these surveys; for example, the ACL dataset implements a hierarchical procedure to 134 
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backfill missing weight estimates from MRFSS (now MRIP; 135 

http://www.st.nmfs.noaa.gov/recreational-fisheries/index).  In short, samples are aggregated 136 

upward (i.e., wave, mode) to ensure adequate sample size (i.e., >= 30). 137 

The MRFSS  intercepts collect data on port agent observed landings (‘A’ catch) and 138 

angler reported landings (‘B1’ catch) and discards (‘B2’ catch) in numbers by species, two-139 

month ‘wave’ (e.g., Wave 1 = Jan/Feb, …, Wave 6 = Nov/Dec), area fished (inland, state, and 140 

federal waters), mode of fishing (charter, private/rental, shore), and state (North Carolina to 141 

Louisiana).  These dockside intercepts are expanded using effort data collected via telephone 142 

surveys (private/rental: random digital dial during each wave; for-hire: weekly 10% random 143 

sample).  In 2012, MRFSS was nominally replaced by the Marine Recreational Information 144 

Program (MRIP).  In 2013, the MRFSS survey methodology was modified by MRIP, resulting in 145 

some changes that are still being calibrated by SEFSC.  Thus, MRIP values from 2013 forward 146 

were not considered for this modeling exercise.   147 

Landings of headboats (i.e., recreational vessels where customers pay "by the head") are 148 

calculated using a combination of logbook reports and dockside sampling, and adjustments to 149 

landings are made based on underreporting and misreporting determined through dockside 150 

validation by port agents.  Southeast Headboat Survey 151 

(http://www.sefsc.noaa.gov/labs/beaufort/sustainable/headboat/) fishing records contain trip-152 

level information on number of anglers, trip duration, date, area fished, landings (number of fish) 153 

and releases (number fish) by species.  154 

The TPWD Creel Survey (https://tpwd.texas.gov/fishboat/fish/didyouknow/creel.phtml) 155 

generates estimates of landings for private/rental boats and charter vessels fishing off Texas.  156 

TPWD conducts a stratified random angler-intercept survey at specified boat-access sites 157 

http://www.st.nmfs.noaa.gov/recreational-fisheries/index
http://www.sefsc.noaa.gov/labs/beaufort/sustainable/headboat/
https://tpwd.texas.gov/fishboat/fish/didyouknow/creel.phtml
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throughout the year.  TPWD landings are reported in numbers by ‘high-use’ (May 15-November 158 

20) and ‘low-use’ time periods (November 21-May 14), area fished (state and federal waters), 159 

and mode (charter, private/rental).  TPWD high and low use landings estimates are re-estimated 160 

by NMFS personnel to correspond to MRFSS two-month waves.   161 

 Landings time series for three recreationally-important stocks and one incidentally-162 

caught stock complex with relatively simple management histories were assembled.  Landings 163 

for vermilion snapper (Rhomboplites aurorubens), and Gray Snapper (Lutjanus griseus) 164 

managed by the GMFMC as well as Red Porgy (Pagrus pagrus) and the ‘Grunts’ complex 165 

managed by the SAFMC were computed as the sum of MRFSS, HBS, and TPWD landings by 166 

year and wave.  The SAFMC ‘Grunts’ complex contains White Grunt (Haemulon plumierii), 167 

Margate (Haemulon album), Sailor's Choice (Haemulon parra), and Tomtate (Haemulon 168 

aurolineatum); most of these stocks are incidentally caught on trips targeting other species.  169 

During the years considered for this analysis, none of these stocks were subject to quota closures. 170 

Management histories were reconstructed for all four species to account for the timing of 171 

federal recreational quota closures and closed seasons.  For projection purposes, all recreational 172 

landings were assigned to two-month waves.  Model inputs for each species were expressed as 173 

catch (in pounds whole weight) per open day (catch was assumed equal for all open federal days 174 

within a wave).  Expressing catch as a daily rate was important for determining the date a catch 175 

limit might be exceeded and also for handling any closures in the management history of the 176 

stock.  As states adopted compatible seasonal regulations for the species of concern, all landings 177 

were assumed to occur within the federal season; thus, the federal open days by wave were used 178 

as the divisor for computing wave-specific catch-per-day.  To reduce prediction bias associated 179 

with reductions in catches due to fisheries closures in the Gulf of Mexico following the 180 
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Deepwater Horizon/BP oil spill in April 2010, values for April-December 2010 in the Gulf of 181 

Mexico were recomputed as the average of 2009 and 2011 values for the same time period.  182 

Shorter duration events such as hurricanes and red tides were not considered. 183 

Modeling approach 184 

 Time series of recreational harvest for each species were fitted using GLMs (Hardin and 185 

Hilbe, 2007), GAMs (Wood, 2006), and seasonal autoregressive integrated moving average 186 

models (SARIMA;(Box et al., 2013)).  Projected catch per day by wave was projected in pounds 187 

instead of numbers because the ACLs for these stocks are specified in pounds.   188 

Generalized Linear Model 189 

 Long-term and seasonal trends in the catch-per-day time series were captured using a 190 

GLM, fit with Proc GENMOD in SAS v9.2 software (SAS Institute, Inc., 2000).  Mean catch-191 

per-day (lbs) was dependent upon a linear predictor of year and a quadratic predictor of wave, 192 

which were linked via a log link function with a negative binomial response error distribution 193 

(Nelder and Wedderburn, 1972).  Residual diagnostics and Akaike's Information Criterion 194 

(AIC;(Akaike, 1974) values were used to select the final model configurations.   195 

Generalized Additive Model 196 

Generalized additive models were also fit to each time series.  Mean catch per day (lbs) 197 

was predicted using a cubic-spline smoother (s) for the main effects (year) and a tensor product 198 

spline (te) (De Boor and others 1978) for the interaction term (wave, year) (Gasper and others 199 

2013).  GAMs were fit using the mgcv library (Wood, 2006) in R v.3.0.2 (R Development Core 200 

Team, 2013).  Backward selection was used to determine if predictors or interactive effects could 201 

be removed without compromising model performance.  AIC and a log-likelihood ratio test were 202 

used to determine whether more complex models were warranted (Froeschke and others 2012).  203 
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Seasonal ARIMA Model 204 

Time series exhibiting a long-term trend and a seasonal trend may be well-suited to a 205 

SARIMA model (Box et al., 2013).  In a SARIMA (p,d,q)*(P,D,Q) model, the auto-regressive 206 

component (p) represents the lingering effects of previous observations, the integrated 207 

component (d) represents temporal trends, and the moving average component (q) represents 208 

lingering effects of previous random shocks (or error).  SARIMA models were implemented 209 

using Proc ARIMA in SAS v9.2 (SAS Institute, Inc., Cary, NC).  All possible combinations of 210 

single-difference SARIMA models for catch-per-day by wave were considered (Table A1).  A 211 

single-difference SARIMA model only considers a maximum of one differencing term in the 212 

annual and one differencing term in the seasonal component.  All SARIMA models were fit 213 

using conditional least squares.  Stationarity tests were used to guide differencing selection.  214 

Final SARIMA model selection was guided by examination of autocorrelations, inverse 215 

autocorrelations, partial autocorrelations, cross-correlations, residual diagnostics, and AIC.   216 

Model evaluation and performance 217 

 Time series of three different lengths (i.e., 1999-2011, 2004-2011, and 2007-2011) were 218 

compared in terms of model fit and forecasting performance.  Exploring time series of varying 219 

lengths is important as stocks vary in the period for which reliable catch data exists and this 220 

approach permits a mechanism to examine trade-offs with model complexity across time series 221 

of different lengths that are not confounded by indidual species effects.  Although data were 222 

available prior to 1999, preliminary projections suggested model performance was occasionally 223 

improved by truncating the time series but not by extending it to prior to 1999.  To evaluate 224 

forecast utility, we evaluated the proportion of variation explained by the covariates (R2), and the 225 

mean error (i.e., observed - fitted values) for the final year of data.  For Atlantic stocks, we also 226 
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removed the terminal year from the time series (i.e., ‘drop-one’), re-fit the model to 2004-2010 227 

data and predicted landings for 2011 to provide a more robust evaluation of forecast performance 228 

by using the fitted model to forecast beyond the data that were used to build the model and more 229 

closely simulate how these models would be used in practice by resource managers.  The 230 

deviance between the forecast and the actual landings in the final year provided an additional 231 

estimate of accuracy.  This ‘drop-one’ approach was only applied to Atlantic stocks due to the 232 

confounding impact of having up to 36.6% of the Gulf of Mexico EEZ closed to fishing in 2010 233 

due to the Deepwater Horizon/BP Oil Spill.  Finally, a variation on the ‘drop-one’ approach was 234 

applied to all four stocks by plotting cumulative landings time series to evaluate model fits from 235 

1999-2011, 2004-2011, and 2007-2011 data relative to observed values in 2011 and model 236 

forecasts relative to observed values in 2012.  A simple approach of using the previous year’s 237 

landings as a forecast was also explored for all scenarios.  As SARIMA uses a Gaussian error 238 

structure and permits negative forecast values, all SARIMA-based predictions of negative 239 

catches within a wave were converted to zeroes for these comparisons. 240 

Results 241 

 Most stocks exhibited long-term trends as well as seasonal periodicity in landings. Catch 242 

was typically lowest during winter  (i.e., Waves 1 and 6) and peaked during summer (i.e., Waves 243 

3-4).  Model statistics are provided in Table 1.  For the longer time series (i.e., 1999-2011, 2004-244 

2011), a SARIMA (0,1,1)x(0,1,1) structure fit the data best of the different SARIMA models 245 

considered; meaning the data were differenced at the previous time step and the seasonal time-246 

step, and a moving average term was used on both to fit the data.  In the shortest time series 247 

evaluated (i.e., 2007-2011), a SARIMA (1,1,0)x(0,1,1) structure fit the data best of the different 248 
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SARIMA models considered, indicating an autoregressive term did better capturing the trend 249 

with a limited set of data than a moving average.  250 

Gulf of Mexico 251 

 From 1999 to 2011, vermilion snapper landings peaked during summer each year and 252 

total annual landings increased during the time series (Figures 1, 2).  All modeling approaches 253 

captured this pattern after appropriate model fitting and selection routines.  For vermilion 254 

snapper, R2 increased with shorter time series for all models and the GAM model provided the 255 

best fit to the observed data (Table 1).  Examining the mean error during the final year of data 256 

indicated the SARIMA model fits were much closer to the observed values, with the lowest 257 

mean error in the final year provided by the shortest time series (2007-2011; SARIMA: 162.66, 258 

GAM: 735.01, GLM: 607.86 lb/day).  This time series was non-stationary with increasing catch 259 

rates toward the end of the period.  Of the models considered, SARIMA most closely captured 260 

this pattern in the observed data, and only under-estimated landings by 5% for the 2007-2011 261 

input time series.  The other modeling approaches resulted in much higher under-estimation of 262 

total landings (19-53%), with GLM showing the greatest fluctuation in accuracy dependent upon 263 

input time series. 264 

 From 1999 to 2011, Gray Snapper landings peaked during summer each year and total 265 

annual landings increased and then decreased during the time series (Figures 1, 3).  As with 266 

vermilion snapper, all three models captured this pattern and R2 increased with shorter time 267 

series for all three model approaches; the GAM was the best fit to the observed data (Table 1).   268 

In terms of explained variance, the GLM and SARIMA models were comparable although 269 

SARIMA had lower mean error in the final year of the times series.  The lowest mean error in 270 

the final year was provided by the shortest time series (2007-2011; SARIMA: 59.31, GAM: 271 
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650.30, GLM: 463.01 lb/day).  The time series was non-stationary; however, the greatest annual 272 

landings of Gray Snapper occurred in the middle third of the time series.  Fits of regression 273 

models to the final year in the time series were highly dependent on the input time series 274 

selected, and in most cases were outperformed by the previous year’s landings.  In the shortest 275 

time series considered (i.e., 2007-2011), the SARIMA provided the best fit, overestimating 276 

cumulative landings by only 2%.  The SARIMA model produced negative catch predictions for 277 

some waves (Figure 3).   278 

Atlantic 279 

 Red porgy annual landings were relatively stable from 1999-2012 with the exception of a 280 

trough in 2000 and a peak in 2007 (Figure 1).  Atlantic Red Porgy displayed a distinct seasonal 281 

pattern with catch rates peaking during summer each year (Figure 4) and this pattern was 282 

captured by all models.   Model fits improved with shorter time series and the GAM model 283 

provided the best fit to the observed data (Table 1).  Examining the mean error during the final 284 

year of data indicated the SARIMA model fits were much closer to the observed values.  The 285 

lowest mean error in the final year was provided by the middle time series (2004-2011; 286 

SARIMA: 10.51, GAM: 43.33, GLM: 20.41 lb/day).   Of the models considered, SARIMA most 287 

closely captured the inter-annual pattern in the observed data and model fits to the 2004-2011 288 

time series underestimated 2011 cumulative landings by only 1%. 289 

 From 1999 to 2011, ‘Grunts’ complex landings peaked during summer each year and 290 

total annual landings were relatively stable over the study period (Figure 1, 5).  Similar to the 291 

other species examined, the explained variance in annual landings of ‘grunts’ for all models 292 

increased with shorter time series and the GAM provided the best fit to the observed data (Table 293 

1).   In terms of explained variance, the GLM and SARIMA models were comparable although 294 
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SARIMA was more accurate than GLM when comparing the fitted and observed values in the 295 

final year of the times series.  The lowest mean error in the final year was provided by GAM in 296 

the middle time series (2004-2011; SARIMA: 368.10, GAM: 4.38, GLM: 119.34 lb/day).   There 297 

was a spike HBS and MRFSS landings in Wave 3, 2007 that was not captured by any models.     298 

Forecast and Summary 299 

The trend for the ‘Grunts’ complex was dynamic (see Figure 5).  The drop-one scenario 300 

model fits to the final year were excellent for SARIMA (only 7% error), but model predictions 301 

from SARIMA were poor (a 67% underestimate).  Both SARIMA and GAM overweighted the 302 

long-term decline in landings (Figure 6).  For the Atlantic ‘Grunts’ complex the most accurate 303 

prediction was provided by the previous year’s landings.  For Red Porgy, SARIMA provided the 304 

best model fit to the final year of data (a 6% overestimate) and the best forecast accuracy (a 4% 305 

overestimate).  Catch levels in 2011 for both stocks were within the long-term range of previous 306 

catch levels. 307 

Examination of model fits to cumulative observed landings for 2011 indicated that in 9 of 308 

12 scenarios, model fits from SARIMA were superior to GLM and GAM (closer to observed 309 

values; Figure 7).  SARIMA confidence intervals were much larger than confidence intervals for 310 

fitted GLM or GAM models (Figure 7).  For SARIMA models, the confidence interval contained 311 

the observed values in all twelve scenarios examined whereas the confidence intervals estimated 312 

using GLM and GAM did not always contain the observed values.  A comparison of the percent 313 

deviation from the observed cumulative landings trend by wave, across stocks and time series, 314 

indicated that GLM provided the best overall model fits (0.2% ± 36.2% error; mean ± SD), 315 

followed by SARIMA (5.7% ± 76.7%).  GAM and the previous year’s landings provided similar 316 

overall predictive error (13.9% ± 31.1%, 13.2% ± 43.3%, respectively).  One undesirable feature 317 
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of SARIMA is that declining trends in landings during a given wave may be forecast as zero or 318 

negative landings, as observed with Gulf Gray Snapper  (Figure 3).  In this study, negative 319 

forecasts were replaced with zeroes; however, it may be preferable to substitute the most recent 320 

year’s landings for that wave to avoid underestimating harvest.  This approach reduced mean 321 

error from SARIMA predictions by wave, across stocks and time series by nearly half (from 322 

5.7% to 2.9%). 323 

Total 2012 landings for Gulf vermilion snapper were 23% lower than 2011 landings; 324 

whereas total 2012 landings for the other stocks evaluated were 35-42% higher than 2011 values.  325 

Examination of model forecasts to cumulative observed landings for 2012 indicated that in 5 of 326 

12 scenarios, mean forecast values of SARIMA were closest to observed values predictions 327 

(Figure 8).  In 5 of the remaining 7 scenarios, GLM provided the best predictions (Figure 8).  For 328 

Gulf Gray Snapper, SARIMA provided the best prediction using the 2007-2011 time series (8% 329 

error).  For Gulf vermilion snapper, GLM provided the best prediction using the 2004-2011 time 330 

series (-1% error).  For the Atlantic ‘Grunts’ complex, the best predictions were obtained from 331 

SARIMA and GLM using the 1999-2011 time series (-4% and +4% error in the cumulative 332 

landings prediction, respectively).  For Atlantic Red Porgy, the best prediction was from GLM 333 

using the 1999-2011 time series (-16% error).  SARIMA confidence intervals were much larger 334 

than confidence intervals for fitted GLM or GAM models, indicating greater uncertainty (Figure 335 

8).  SARIMA tended to be more responsive to short-term trends in catch that deviate from the 336 

long-term average trend.  For SARIMA models, the confidence interval contained the observed 337 

values in all twelve scenarios examined whereas the confidence intervals estimated using GLM 338 

and GAM did not always contain the observed values.  Overall, SARIMA fits to seasonal 339 

patterns were less biased but all model fits became more similar as the length of the input time 340 
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series was reduced.  In the 12 scenarios explored, at least one regression-based approach 341 

provided a superior prediction relative to using the previous year’s landings.   342 

A graphical comparison of the model fitting and forecasting performance of GLM, GAM, 343 

and SARIMA models across the four stocks illustrates the tradeoffs in terms of model fit, 344 

explained variance and forecasting performance (Figure 9).  In terms of fitting the model to the 345 

observed data, the flexibility of the GAM provided superior fits for each stock relative to 346 

SARIMA and GLM.  However, in terms of predictive performance, as indicated by fits to the 347 

terminal year of the time series and accuracy of drop-one scenario forecasts, SARIMA and GLM 348 

were generally superior to GAM.   349 

 350 

Discussion 351 

 Federal requirements implemented in the amended MSA (U.S. Congress, 2006) require 352 

specification (and monitoring) of ACLs for most federally managed stocks.  Resources are 353 

insufficient to develop population dynamics-based landings projection models for most managed 354 

stocks (Martell and Froese 2013; Hanson et al., 2006; Hilborn and Walters, 1992).  Thus, other 355 

methods must be identified to predict catch rates to ensure landings remain within prescribed 356 

ACLs (Carruthers and others 2014).  Given the large number of stocks that must be monitored 357 

(Berkson and Thorson 2015), routines must be robust to widely varying temporal patterns that 358 

characterize recreational landings patterns for most species (Ward et al. 2014).  Similar to 359 

previous efforts with Atlantic and Gulf menhaden, this study suggested statistical forecasting 360 

could be a viable approach to predicting landings (Hanson et al., 2006; Ives et al., 2010).  A 361 

major goal of recreational fisheries management is to prevent catch limit overages – this can be 362 

accomplished by in-season closures or post-season adjustments to the regulations or season 363 
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length in the following year.  Accurate forecasts of recreational catches are critical to the 364 

application of both of these accountability measures. 365 

Our study suggests semi-automated SARIMA or GLM model fitting and selection 366 

routines could be used to develop short-term (i.e., one year) forecasts to inform management 367 

decisions; however, the quality and time span of input data can affect the accuracy of model 368 

forecasts.  Longer time series tended to include up and down fluctuations in catch, whereas 369 

cutting the regression input time series omitted these fluctuations.  By fitting to a shorter time 370 

series, the short-term trend tended to be better-captured at the expense of long-term fluctuations 371 

in catch.  No single model or time series performed best across all stocks of interest; thus 372 

performance metrics need to be carefully selected and evaluated across multiple models.  Our 373 

projections implicitly integrated the highly correlated terms of catch and effort by expressing 374 

catch rates as catch per open day.  Changes in management regulations, environmental 375 

conditions, or economic conditions that might lead to changes in catch per unit effort would lead 376 

to increased uncertainty in forecasts; if these changes are anticipated, they can be incorporated as 377 

covariates in the models. 378 

In general, SARIMA models performed well across a range of time series and would 379 

serve as an appropriate starting point for forecasting landings.  The SARIMA model mean 380 

forecasts were generally un-biased in fits to observed data although confidence limits were 381 

consistently greater than those produced from GLM or GAM.  SARIMA models can 382 

accommodate but do not require additional covariates for either model building or forecast, a 383 

distinct advantage over GLM and GAM.  For in-season quota monitoring, the manager’s goal is 384 

to close the fishery before the landings exceed the quota, but without forgoing harvest up to the 385 

quota.  Thus, the predicted trajectory of cumulative landings is more important than the final 386 
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projected total.  Comparisons of SARIMA, GAM, and GLM forecasts fit to the 2011 cumulative 387 

observed landings time series indicated the SARIMA approach best fit the cumulative landings 388 

time series for most scenarios.  However, for some stocks, GLM performed better than SARIMA 389 

and was less sensitive than SARIMA or GAM to recent trends, providing a useful bookend for 390 

forecasts.   391 

SARIMA forecasts should be treated with skepticism when they generate negative 392 

landings values, as they are likely overfitting a recent trend.  Negative forecast values from any 393 

catch forecast model should minimally be replaced with zeroes, as negative catches are not 394 

possible.  In this study, substitution of landings values for the most recent year of fishing 395 

improved forecast accuracy over replacement with zeroes in most cases.  For model projections 396 

to 2012, the SARIMA model forecast negative catch rates in 2012 for Atlantic Red Porgy in 397 

wave 1 using all three time series, and in wave 6 using the 1999-2011 and 2007-2011 time series.  398 

Replacing these forecasts with the previous year’s landings resulted in minor improvements in 399 

cumulative total forecast accuracy (projected cumulative landings relative to observed 400 

cumulative landings) as compared to replacement with zeroes (1999-2011: +6%, 2004-2011: 401 

+1%, 2007-2011: +4% more accurate).  Replacement of the wave 6 landings for Gulf vermilion 402 

snapper in the 2007-2011 forecast reduced forecast accuracy by 11% compared to substituting 403 

zeroes.  SARIMA forecast negative catch rates in 2012 for Gulf Gray Snapper in waves 1, 2, 5, 404 

and 6 using the 1999-2011 and 2004-2011 time series.  Replacing these forecasts with the 405 

previous year’s landings resulted in major improvements in cumulative total forecast accuracy as 406 

compared to replacement with zeroes (1999-2011: +26%, 2004-2011: +42% more accurate).  In 407 

summary, post hoc replacement of negative SARIMA values with landings from the most recent 408 

year of fishing is recommended. 409 
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A strength of GAM models is the ability to fit noisy, non-linear data, however, this 410 

flexibility can also permit overfitting of the model to these data if careful model selection and 411 

validation routines are not employed (Wood 2006).  GAM models provided the best fit to the 412 

observed data in nearly all cases owing to the additional flexibility of this model to accommodate 413 

noisy data.  However, their tendency to overfit, despite model selection and validation resulted in 414 

reduced forecasting performance in comparison to SARIMA and GLM models.  While 415 

overfitting can be addressed in GAMs (Zuur et al., 2010) by controlling the "wiggliness" of the 416 

smoothing function, this can be quite arbitrary with small data sets.  Alternatively, cross-417 

validation could be used, though the appropriateness of this approach in this present study is 418 

doubtful given the moderate size of the input data sets.    419 

As with any model, the reliability of our forecasts was dependent upon both the accuracy 420 

and the consistency of the historical data.  Recreational data in the southeastern U.S. is based 421 

upon surveys (i.e., SE Headboat Survey, MRFSS, and the TPWD Creel Survey).  Each of these 422 

surveys contains uncertainty and spikes in landings estimates may occur when high catch rates 423 

from a limited subsample are expanded out.  Survey data based upon dockside intercepts 424 

extrapolated to a fishing population comprising millions of people is subject to variability which 425 

may reflect sampling issues rather than actual landings trends.  Changes in survey methodologies 426 

or management regulations may reduce the predictive utility of historical data.  Future 427 

forecasting modeling should attempt to incorporate uncertainty in wave-specific recreational 428 

catch estimates to avoid model overweighting of outliers that may be an artifact of survey design.  429 

Additionally, the utility of all of the methods explored in this study is contingent upon the ability 430 

of historical trends to represent future landings.  Angler behavior is notoriously difficult to 431 

predict (Johnston and others 2010; Branch and others 2006), and changes in management 432 



Forecasting for Fisheries Management Farmer & Froeschke 

20 
 

regulations (i.e., closed seasons, bag limits, size limits) within or following the historical time 433 

series make forecasting future recreational catches even more challenging.  Future forecasting 434 

modeling could explore the use management regulation time series as covariates, and also 435 

evaluate the utility of economic predictors of recreational fishing effort such as United States 436 

Gross Domestic Product or mean fuel prices.  Finally, changes in stock size due to rebuilding 437 

may also pose a problem, as increasing catch rates may result in higher-than-expected landings.  438 

When a stock assessment is available, catchability may be combined with historical and 439 

projected abundance-at-age to produce a time series of exploitable abundance.  Exploitable 440 

abundance may be a useful predictive covariate for catch forecasting models (N.A. Farmer, 441 

unpublished data). 442 

 443 

Conclusions 444 

Recreational landings comprise a substantial proportion of the total landings for many 445 

species in the southeastern U.S., and this pattern is becoming more common worldwide 446 

(Coleman and others 2004; Cooke and Cowx, 2004).  Coupled with more stringent fishery 447 

regulations, the need to predict recreational fish landings will only increase.  Although GAM’s 448 

flexibility consistently provided the best fits to the input data, the SARIMA model most often 449 

provided the best fit to the final year in the time series, the most reliable forecast, and the best 450 

track to the in-season cumulative landings curve.  Given that management agency resources are 451 

currently inadequate to develop stock assessments for all managed species (Martell and Froese 452 

2013), developing suites of semi-automated approaches to understanding historical catch and 453 

future patterns is essential. 454 

 455 
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  543 



TablesTable 1. Goodness of fit (R2), mean error in terminal year across waves (ME; in pounds per day), total percent error in final 544 
projected cumulative landings (TE), and mean error in projected year across waves (Drop1) for different stocks, modeling approaches, 545 
and time series.  Note ‘Drop1’ denotes forecasts where the terminal year of data is removed, the model refit, and the terminal year fit 546 
is compared to the observed values. 547 

STOCK MODEL R2 
(1992-

2011) 
R2 

(1999-

2011) 
R2 

(2004-

2011) 
R2 

(2007-

2011) 
ME (1992-

2011) 
ME 

(1999-2011) 
ME (2004-

2011) 
ME 

(2007-2011) 
TE (1992-

2011) 
TE (1999-

2011) 
TE (2004-

2011) 
TE (2007-

2011) 

ME_ 
Drop1 

(2004-2010) 

TEfit2010

_Drop1 

(2004-2010) 

TEpredict2011 

_Drop1 

(2004-2010) 

Gulf of 
Mexico 

Vermilion 
Snapper 

SARIMA 0.66 0.69 0.73 0.86 895 518 513 163 29% 17% 17% -5% N/A N/A N/A 

GAM 0.70 0.79 0.81 0.91 1140 1031 995 735 -36% -33% -32% -23% N/A N/A N/A 

GLM 0.75 0.75 0.75 0.91 1660 1067 1070 608 -53% -34% -34% -19% N/A N/A N/A 

PrevYr N/A N/A N/A N/A 1097 1097 1097 1097 -34% -34% -34% -34% N/A N/A N/A 

Gulf of 
Mexico 

Gray 
Snapper 

SARIMA 0.64 0.60 0.66 0.85 1002 840 1307 59 -25% -21% -33% 2% N/A N/A N/A 

GAM 0.70 0.79 0.81 0.91 480 591 2475 650 18% 22% 93% 24% N/A N/A N/A 

GLM 0.50 0.52 0.63 0.65 2034 1892 900 463 76% 71% 34% 17% N/A N/A N/A 

PrevYr N/A N/A N/A N/A 385 385 385 385 16% 16% 16% 16% N/A N/A N/A 

South 
Atlantic 
"Grunts" 
Complex 

SARIMA 0.51 0.42 0.37 0.31 212 51 368 169 -25% -6% -42% -19% 735 7% -67% 

GAM 0.70 0.79 0.81 0.91 68 80 4 84 7% 9% -1% -10% 218 17% -26% 

GLM 0.45 0.45 0.50 0.64 290 332 119 66 33% 38% 13% -8% 213 52% 24% 

PrevYr N/A N/A N/A N/A 104 104 104 104 -12% -12% -12% -12% 104 86% -12% 

South 
Atlantic 

Red Porgy 

SARIMA 0.40 0.61 0.66 0.65 36 17 11 58 -12% -5% -1% -25% 6 6% 4% 

GAM 0.72 0.70 0.84 0.85 1 43 43 30 0% -22% -22% -15% 129 -20% -66% 

GLM 0.63 0.60 0.66 0.85 5 114 20 52 2% 58% 10% -27% 67 51% 34% 

PrevYr N/A N/A N/A N/A 18 18 18 18 -9% -9% -9% -9% 18 46% -9% 



Figure Captions  548 

Figure 1. Time series of recreational landings data, in millions of pounds whole weight, for Gulf 549 

of Mexico vermilion snapper and Gray Snapper, and Atlantic ‘grunts’ complex and Red Porgy, 550 

by data source (Texas Parks and Wildlife Department Creel Survey: TPWD, Marine 551 

Recreational Fisheries Statistics Survey: MRFSS, and Southeast Headboat Survey: HBS). 552 

Figure 2. Three statistical models (solid gray line) and their 95% confidence limits (dashed gray 553 

line) were fit to landings data of Gulf of Mexico vermilion snapper from 1999 to 2011 (open 554 

circles), to evaluate model fits across model types and times series. 555 

Figure 3.  Three statistical models (solid gray line) and their 95% confidence limits (dashed gray 556 

line) were fit to landings data of Gulf of Mexico Gray Snapper from 1999 to 2011 (open circles), 557 

to evaluate model fits across model types and times series. 558 

Figure 4. Three statistical models (solid gray line) and their 95% confidence limits (dashed gray 559 

line) were fit to landings data of Atlantic Red Porgy from 1999 to 2011 (open circles), to 560 

evaluate model fits across model types and times series. 561 

Figure 5. Three statistical models (solid gray line) and their 95% confidence limits (dashed gray 562 

line) were fit to landings data of the Atlantic ‘grunts’ complex from 1999 to 2011 (open circles), 563 

to evaluate model fits across model types and times series.  564 

Figure 6. Three statistical models (solid gray line) and their 95% confidence limits (dashed gray 565 

line) were fit to landings data of Atlantic Red Porgy and the ‘grunts’ complex from 1999 to 2010 566 

(open circles), withholding 2011 landings data (open squares) from the model, to evaluate 567 

forecast accuracy across model types and times series.   568 

Figure 7. Cumulative landings plots showing SARIMA (red), GAM (blue), and GLM (green) 569 

model fits and 95% confidence limits (shaded areas) relative to observed cumulative landings for 570 
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2011, based on 1999-2011, 2004-2011, and 2007-2011 time series data for Atlantic Red Porgy, 571 

Atlantic ‘grunts’ complex, Gulf of Mexico Gray Snapper, and Gulf of Mexico vermilion snapper. 572 

Figure 8. Cumulative landings plots showing relative model performance between SARIMA 573 

(red), GAM (blue), and GLM (green) forecasts with 95% confidence limits (shaded areas) 574 

relative to observed cumulative landings for 2012, based on model fits to 1999-2011, 2004-2011, 575 

and 2007-2011 time series data for Atlantic Red Porgy, Atlantic ‘grunts’ complex, Gulf of 576 

Mexico Gray Snapper, and Gulf of Mexico vermilion snapper.  577 

Figure 9. Radar plots showing relative model performance between SARIMA (solid line), GAM 578 

(dashed line), and GLM (dotted line) forecast models with regards to model fitting (R2) to 579 

different time series lengths, mean error in model in the final year for model fits, and mean 580 

accuracy of model forecasts under ‘drop-one’ fit scenarios for four recreationally exploited 581 

stocks. 582 

  583 
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APPENDIX 584 

Table A1. Seasonal (s) autoregressive integrated moving average (SARIMA) (p,d,q)*(P,D,Q)s 585 
model combinations evaluated, where the auto-regressive component (p) represents the lingering 586 
effects of previous observations, the integrated component (d) represents temporal trends, the 587 
moving average component (q) represents lingering effects of previous random shocks (or error), 588 
and s denotes the seasonal time step.  As recreational landings are primarily collected in two-589 
month waves, s was set equal to 6.  A’1’ denotes an active component in the model. 590 

ARIMA(p,d,q)X(P,D,Q)s Model 
ARIMA(0,1,1)X(0,1,1)s 
ARIMA(1,0,0)X(0,1,1)s 
ARIMA(0,0,1)X(0,1,1)s 
ARIMA(0,1,1)X(1,1,0)s 
ARIMA(1,0,0)X(1,1,0)s 
ARIMA(0,0,1)X(1,1,0)s 
ARIMA(1,1,0)X(0,1,1)s 
ARIMA(1,1,0)X(1,1,0)s 
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